Infrared Studies of Heterocyclic Compounds. Part I. 447. 4-Substituted Pyridines.

By A. R. KATRITZKY and J. N. GARDNER.

4-Monosubstituted pyridines show eight characteristic bands in chloroform; their positions and intensities are recorded and discussed for fortyeight compounds.

AVAILABLE information about the infrared spectra of heterocyclic compounds is very much less than their importance justifies. Thus in the two reviews by Bellamy 1 and by Jones and Sandorfy 2 only ca. 3% of the space is devoted to the topic. We considered that it was of interest to compare a large number of spectra, measured under standard conditions, in which only one parameter was being changed; after our work³ on substituted pyridine 1-oxides this paper is devoted to the spectra of forty-eight 4-monosubstituted pyridines. Of the bands with $\varepsilon_{A} \ge 15$, eight were found to be characteristic of the nucleus and are recorded in the Table; the other bands were, with few exceptions, characteristic of the substituent. For reasons given previously⁴ the spectra were all measured at 0.2M-concentration in chloroform in a 0.117 mm. cell, and apparent molecular extinction coefficients recorded.

The detailed spectrum of 4-picoline as liquid and gas is known.⁵ Cook and Church ⁶ investigated the spectra of 4-benzyl- and six 4-alkyl-pyridines as liquid films, and recorded the positions of characteristic bands, without giving any intensities. The bands at 1613— 1597, 1570–1555, 1508–1490, 1422–1406, 1072–1067, 1000–995, and 822–785 cm.⁻¹ which they record correspond to those discussed in this paper. They also record absorption near 1460 and 1380 cm.⁻¹ which may be assigned to substituent CH deformation; near 1230 cm.⁻¹, which would be obscured by solvent absorption in our work; and near 1300 cm.⁻¹ which we have not found: the last band was stated to be " of variable intensity " and assigned to an overtone. The actual positions of the bands found in the two investigations show fair agreement considering the difference in state; our compounds with a saturated carbon atom directly attached to the ring usually show a smaller range than that reported by Cook and Church: ⁶ e.g., in the liquid, 4-picoline absorbs at 1406 cm.⁻¹, and 4-ethylpyridine at 1422 cm.⁻¹, but in chloroform solution both absorb at 1415 cm.⁻¹. Shindo and Ikekawa⁷ discussed certain portions of the spectra of the 4-methyl and 4-ethyl compounds, in connexion with a general investigation into alkylpyridines, and the spectra of the 4-chloro-, 4-methoxy-, and 4-nitro-compound have also been recorded.⁸

The 3000 cm.⁻¹ Region.—Usually only one band is resolved, and for reasons discussed

- ⁵ Long, Murfin, Hales, and Kynaston, Trans. Faraday Soc., 1957, 53, 1171.

<sup>Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London, 1956.
Jones and Sandorfy in Weissberger, "Technique of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience, London, 1956.
Katritzky and Gardner, J., 1958, 2192; Katritzky and Hands, J., 1958, 2195.
Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
Long Murfin Hales and Kynaston Trans Engadou Soc. 1057, 59, 1171.</sup>

 ⁶ Cook and Church, J. Phys. Chem., 1957, **61**, 458.
 ⁷ Shindo and Ikekawa, Pharm. Bull. (Japan), 1956, **4**, 192.
 ⁸ Costa and Blasina, Z. phys. Chem. (Frankfurt), 1955, **4**, 24.

		1		2		3	4
		CHCl ₃		A_{g}		B_{1g}	$B_{2^{u}}$
		νCH		∫ vCC		∫ vCC	{ vCC
				₹vCN		ι νCN	(vCN
No.	Subst.	cm1	ε _A	cm1	εΑ		Λ cm. ⁻¹ ϵ_{Λ}
1	$\rm NMe_2$	2940	110	1607	560		30 1522 170
2	NHPh	2940	35	1595	430		40 1510 185
3	NH ₂	2930	55	$\begin{array}{c} 1606 \\ 1601 \end{array}$	$\begin{array}{c} 290 \\ 430 \end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4	OMe	2960 2080	75 90	1600	430 320		1505 200 1501 130
5 6	OEt NH∙COMe 	$\begin{array}{c} 2980 \\ 2940 \end{array}$	90 55	1590	320 390		30 1001 10
7	NH-COPh a	2960	50	1593	300	()	() ()
8	Me ^b	2970	55	1610	135	1565 1	15 1499 15
9	Et	2970	70	1606	125		5 1493 10
10	CH₂·CH₂Ph	2960	75	1608	180		20 ()
11	CH ₂ ·CH ₂ ·NH·CO·CH ₂ Ph	2960	95	1610	185		30 (—)
12	CH ₂ ·CH ₂ ·NH·COPh	2970	75	1608	165	()	()
13	CH, CH, NHTs •	2950	55	1609	145		15 (—)
14	CH₂·CH₂·CO₂Me	2960	85	1608	165		25 1490 10
15	CH ₂ ·CH ₂ ·CO ₂ Et	2970	80	1609	160		<u> </u>
16	CH ₂ Ph	2960	50	1602	180		15 ()
17	$CH_2 \cdot C_6 H_4 \cdot NO_2 - p$	2960	35	1601	130		25 ()
18	CH ₂ ·CS·NH·CH ₂ ·CH ₂ Ph	2980	85	1608	120		25 1500 * 80
19	$CH_2 \cdot CS \cdot Pip^d$	2950	165	1601 1601	$\begin{array}{c} 190 \\ 170 \end{array}$		15 (—) 15 (—)
$\frac{20}{21}$	$CH_2 \cdot CS \cdot Morph$	$\begin{array}{c} 2980 \\ 2980 \end{array}$	115 70	1608	175		35 ()
$\frac{21}{22}$	CH ₂ ·COPh CH ₂ ·CO ₂ Me	2980 2970	80	1610	135		25 1496 10
$\frac{22}{23}$	$CH_2 \cdot CO_2 Inc$ $CH_2 \cdot CO_2 Et$	2990	75	1608	115		25 - 100 - 10
24	CH ₂ ·CO·NH·CH ₂ Ph	2970	70	1603	180		50 ()
$\tilde{25}$	CH ₂ ·CO·NHPh	2950	55	$1602 \pm$	260	()	(—)
-0	/CH ₂ Ph	2000				()	
26	CH	2980	90	1600	185	1560	20 ()
	CO·Morph •						
27	C CPh	2990	50	1600	220	1540 *	15 (—)
28	$C C C_6 H_4 \cdot NO_2 - p$	2980	65	1601 ‡	400	1550 ()	()
29	CH:CHPh	2970	50 70	1600	$\frac{290}{260}$		$15 () \\ 15 ()$
$\frac{30}{31}$	CH:CH·C ₆ H ₄ Cl-p	$\begin{array}{c} 2980 \\ 2980 \end{array}$	70 70	$1603 \pm 1601 \pm$	200 380		30 ()
91	CH:CH·C ₆ H₄·NO₂- <i>p</i> ∕∕CHPh	2900	10	1001 +	300	1000	JU (—)
32	CHPh C	2980	110	1600	350	1545	35 ()
	`CO·Morph						
33	CH:CH·CO ₂ Me	2960	65	1600	170		65 1492 15
34	CH:CH·CO ₂ Et	2970	70	1601	165		35 1496 1 0
35	Ph	2950	50	1596	130		20 ()
36	$C_6H_4 \cdot NO_2 - p$	2970	40	1606	105		05 (—)
$\frac{37}{38}$	CH₂•OH	2960	$\begin{array}{c} 60 \\ 55 \end{array}$	$\begin{array}{c} 1610 \\ 1602 \end{array}$	$\begin{array}{c} 90 \\ 115 \end{array}$		25 - 25 - 25 - ()
38 39	CHPh·OH CMe(CN)·OAc	$\begin{array}{c} 2980 \\ 2990 \end{array}$	55 40	1602	115		20 - 20
39 40	CMe(CN)·OBz	2980	40	1600	165		20 = 20 ()
41	CMe:N·NH ₂	2980	45	1590	135		10 —
42	Cl	2980	35	1575	280		15 1482 100
$\overline{43}$	ČN	2990	30	1600	90		30 1490 10
44	CO ₂ Me	2970	60	1604	45		40 1490 10
45	CO ₂ Et	2990	85	1602	35		45 1490 5
46	CHO	2990	30	1600	15	1572	75 1490 15
47	COMe	2980	35	1600	35		30 1489 1 5
48	NO_2	2990	20	1604	25	1575	65 1480 * 15
Se	a footnote n 9109 and als	o for mea	ning of	other sum	hole		

See footnote, p. 2192, and also for meaning of other symbols.

• Measured at 0.02%-concentration in 1 mm. cell because of poor solubility. • Measured at 0.4M-concentration. • Toulene-*p*-sulphonyl derivative. • Piperide. • Morpholide.

in ref. 3 this is assigned mainly to the CH stretching of the solvent, displaced by hydrogen bonding with the pyridine. The band occurs at 2990–2930 [2970 \pm 15] cm.⁻¹; * electron attracting substituents tend to raise the frequency (cf. expected weaker H-bond formation). Compounds with weakly conjugating substituents (Nos. 8-41, except 19, 20, 26, and 32 where there is serious overlapping by substituent absorption) have intensity (35-95) [(65 ± 15)]; * when electron-withdrawing substituents are present (Nos. 42–48) this intensity is (20–35) (except for the esters). Consideration of Nos. 1–7 is complicated

* For the significance of parentheses and brackets see J., 1958, p. 2187.

		5		6		7		8	
		$B_{3^{\prime\prime}}$?		A _u , B _{3g}		B_{1u}	
		$\begin{cases} \nu CC \\ \nu CN \end{cases}$		βСН		γCH		γCH	
No.	Subst.	cm1	εA	cm1	ε _Α	cm1	ε	cm1	ε
1	\mathbf{NMe}_{2}	(-)	(-)	991	300	805	105
2	NHPh	1412	30	(-)	992	105	807	50
3	NH ₂	1432	25		-	991	140	815	120
4	OMe	1425	60	-	-	992	65	819	190
5 6	OEt	1415	25		-	993	95	809	
7	NH•COMe ª NH•COPh ª	(CHCl ₃) (CHCl ₃)		1072 ± 55		996 994	80 50	(CHCl ₃) (CHCl ₃)	
8	Milleon n - Me ^b	1415 35		1072 + 35 1068 + 15		994 997	$50 \\ 45$	(CIICI ₃)	
ğ	Et	1415	40	1065	10	996	30	819	60
10	CH, CH, Ph	1418	50	1070 *	20	996	45	805	55
11	CH ₂ ·CH ₂ ·NH·CO·CH ₂ Ph	1416	100	1068	25	994	45		_ 00
12	CH ₂ ·CH ₂ ·NH·COPh	1418	65	1068	35	995	45		_
13	CH ₂ ·CH ₂ ·NHTs ^c	1418	125	1070 *	110	994	25	814	110
14	$CH_2 \cdot CH_2 \cdot CO_2 Me$	1418	80	1068	20	992	35	-	_
15	CH ₂ ·CH ₂ ·CO ₂ Et	1416	75	1071	25	997	4 0	808	4 0
16	CH ₂ Ph	1418	65	1069	30	996	40	825	20
17	$CH_2 \cdot C_6 H_4 \cdot NO_2 - p$	1418	45	1070	20	997	20	825	10
$\frac{18}{19}$	CH ₂ ·CS·NH·CH ₂ ·CH ₂ Ph	$1418 \\ 1418$	140 90	$\begin{array}{c} 1070 \\ 1070 \end{array}$	35	993	20	-	_
20	CH ₂ •CS•Pip ^d CH ₂ •CS•Morph ^e	1418 *	90 120	1070	30 50	995 995	$40\\35$	-	_
21	CH ₂ ·COPh	1419	65	$1003 \\ 1071 \ddagger$	30	995 *	90		_
$\overline{22}$	$CH_{2} \cdot CO_{2}Me$	1419	80	1071	25	996	50		
$\bar{23}$	CH ₂ ·CO ₂ Et	1419	70	1071	$\frac{1}{25}$	997	30	_	_
24	CH₂•CO•NH•CH₂Ph	1418	80	1070	30	994	30		
25	CH ₂ ·CO·NHPh /CH ₂ Ph	1419	80	1070	15	995	15	-	_
26	CH CO·Morph •	1416*	125	1068 ‡	70	993	35	-	_
27	C : CPh	1410	45	1068	15	990	45	820	120
28	$C C \cdot C_6 H_4 \cdot NO_2 - p$	1409	70	1066	10	990	35	819	155
29	CH:CHPh	1415	30	1068	10	994	65	802	50
30	$CH:CH \cdot C_6H_4Cl-p$	1417	45	1065	10	992	55	(-)
31	$CH:CH \cdot C_6H_4 \cdot NO_2 - p$	1417	60	1065	10	991	50		_
32	CO·Morph •	1415	135	1070 ‡	65	995 *	50	813	60
33	CH:CH∙CO₂Me	1414	85	1066	10	990	65	812	140
34	CH:CH·CO ₂ Et	1415	80	1067	15	992	55	813	120
35	Ph	1409	50	1068	20	990	25	827	80
36	$C_{6}H_{4}\cdot NO_{2}-p$	1413	30	1070	15	993	30	817	190
37	CH2.OH	$\begin{array}{c} 1416 \\ 1414 \end{array}$	85 95	1066 *	-) 30	994 994	45	-	_
$\frac{38}{39}$	CHPh•OH CMe(CN)•OAc	1414	105	1000 +	ა ა თ	994 996	$\frac{40}{35}$	818	120
4 0	CMe(CN)·OBz	1415	100		3	995	$35 \\ 35$	818	135
41	CMe:N·NH ₂	1410	55	1061	′ 30	993	45	820	90
$\hat{42}$	Cl	1409	110	1062	40	985	10	809	110
43	ČN	1412	100	1069	20	993	30	819	150
44	CO ₂ Me	1411	130	1065	80	995	45	829	15
45	CO ₂ Et	1412	105	1066	100	994	30		-
46	CHO	1416	85	1060	20	992	25	(803	55)
47	COMe	1411	120	1064	40	993	25	813	115
48	NO_2	1405	65	1055	30	992	30	-	

by two compounds' being measured at 0.02M-concentration, and the possibility of intramolecular hydrogen-bonding.

The 1650–1550 cm.⁻¹ Region.—Two bands occur. The stronger (col. 2) occurs at 1610–1590 [1603 \pm 5] cm.⁻¹ except for the chloro-compound (No. 42); halogens are known³ to lower this band's frequency in other cases. The intensity depends on the electron-donor properties of the substituent. For amino-, amido-, alkoxy-, and chloro-substituents, it is \geq 280; for strongly electron-withdrawing substituents (Nos. 44–48) it is \leq 45. For groups with relatively weak electronic effects (Nos. 8–41) the intensity is (90–290) [(155 \pm 40)] (except for No. 32 where there is strong overlapping by the carbonyl group). Phenyl groups, of course, also absorb in this region, but much less

strongly; ⁹ however, it is possible to discern their influence. Assignment of this and the other bands is discussed at the end of the paper.

The second band in this region is usually much weaker. When the ring is attached to a saturated carbon atom (Nos. 8—26 and 37—40), position and intensity are fairly constant at 1568—1560 cm.⁻¹ (15—35) [1563 \pm 3 cm.⁻¹ (20 \pm 5)]. Strongly electron-donor substituents (Nos. 1—7) tend to raise both frequency and intensity (cf. the corresponding band in benzenes ¹⁰). Carbon-carbon multiple bonds (Nos. 27—36) lower the frequency to 1553—1545 cm.⁻¹. Electron-acceptors (Nos. 43—48) tend to raise the intensity, but the position varies from 1575 to 1555 cm.⁻¹.

The 1500—1400 cm.⁻¹ Region.—A band (col. 4) frequently occurs at 1522—1480 cm.⁻¹; compounds with powerful electron-donor substituents (Nos. 1—5) absorb strongly at above 1500 cm.⁻¹, whereas those with electron-accepting substituents (Nos. 43—48) absorb weakly at 1490 cm.⁻¹ or below. Chlorine behaves as an electron-donor as regards the intensity, but as acceptor as regards the position of the band. The band is masked in amides and compounds with phenyl groups by substituent absorption; of the remaining compounds with weakly conjugating substituents, weak absorption is shown at 1500—1490 cm.⁻¹ in seven, and for five others the band is absent or too weak to be recorded.

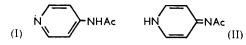
All the compounds show a second band in this region (col. 5) at 1432—1405 $[1415 \pm 4]$ cm.⁻¹. Only the amino- and methoxy-compounds absorb above 1419 cm.⁻¹; all the nineteen compounds (Nos. 8—25, 37) in which the ring is directly attached to a CH₂ group absorb at 1419—1415 cm.⁻¹; carbon–carbon triple bonds and strongly electron-withdrawing substituents tend to lower the frequency to *ca*. 1411 cm.⁻¹. The intensity of this band is especially affected by overlap with substituent bands for Nos. 13, 18—20, 26, and 32; otherwise it is (25—130) [70 ± 25] with a definite tendency to be raised by electron-accepting substituents.

The 1080—980 cm.⁻¹ Region.—Two bands are in general found. The first (col. 6) at 1072—1055 [1067 \pm 3.5] cm.⁻¹ is not found for compounds with strongly electron-donor substituents (Nos. 1—6); with weakly conjugating substituents (Nos. 8—40) the band is in the narrower range 1071—1065 cm.⁻¹ with intensity (10—35) [(20 \pm 8)]; electron-attracting groups (Nos. 41—48) tend to lower the frequency, and increase the intensity.

All the compounds show a band at 997—985 [993 ± 2.5] cm.⁻¹ (Col. 7). The intensity is high with strongly electron-donor substituents (Nos. 1—7); otherwise it is (10—50) [(35 \pm 10)], except for compounds where CH:CH-deformation absorption overlaps (Nos. 29—34).

The 800 cm.⁻¹ Region.—Many of the compounds show a band at just above 800 cm.⁻¹. This is probably a ring CH deformation frequency,⁷ present for the remaining compounds below 805 cm.⁻¹, where it is obscured by solvent absorption.

Assignments.—Comparison with Randle and Whiffen's data ¹¹ for *para*-substituted benzenes suggests the tentative assignments indicated at the head of the Table. There can be little doubt about those in cols. 2, 3, 4, and 5, where the corresponding *para*-benzene absorption is at $[1620 \pm 8, 1571 \pm 11, 1512 \pm 12, \text{ and } 1450 \pm 10 \text{ cm.}^{-1}]$ with average intensities of m, w, vs, and m. Col. 6 probably records an in-plane CH deformation, corresponding to one of two *para*-benzene frequencies B_{3u} or B_{2u} at respectively $[1125 \pm 10 \text{ and } 1018 \pm 10 \text{ cm.}^{-1}]$. The corresponding *para*-benzenoid absorption for the two CH out-of-plane deformation modes (cols. 7, 8) is at $[961 \pm 12, 817 \pm 13 \text{ cm.}^{-1}]$.*


⁹ Katritzky and Lagowski, unpublished results.

¹⁰ Ref. 1, p. 61.

¹¹ Randle and Whiffen, Report on Conference on Molecular Spectroscopy, 1954, Institute of Petroleum, Paper No. 12.

^{* [}Added 28.1.1958.] A Referee has commented that, whereas for vibrations of predominately CH character the 4-substituted pyridines are correctly compared with *para*-disubstituted benzenes, for skeletal vibrations, comparison should be with monosubstituted benzenes (i.e., that, from the point of view of the ring, an electron pair is more like a hydrogen atom than a heavier substituent). As the Referee points out, this would not affect the assignments in cols. 2—5, for here the pattern of absorption is similar in both mono- and *para*-di-substituted benzenes,¹¹ but it suggests an alternative assignment of col. 7 to a vibration corresponding to the A_1 ring vibration at [1001 \pm 4 cm.⁻¹] in monosubstituted benzenes.¹¹

The above work indicates that 4-acetamido- and 4-benzamido-pyridine exist as such (as I) and not in the alternative forms (as II). Other evidence that this is so will be published separately.

Experimental.—The preparation of most of the compounds has already been described.^{3, 4, 12} Specimens were recrystallised or redistilled immediately before measurement.

A Perkin-Elmer model 21 instrument was used with a sodium chloride prism, slit programme 4, and the settings previously given.⁴

THE DYSON PERRINS LABORATORY, THE UNIVERSITY, OXFORD. [Received, January 14th, 1958.]

¹² See also Katritzky and his co-workers, J., 1955, 2581, 2587; 1956, 2063, 2404; 1957, 191, 1769, 4375; 1958, 150, 1263.